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Interocular symmetry of optical 
coherence tomography parameters 
in healthy children and adolescents
Mi Yeon Song1 & Young Hoon Hwang2*

Evaluation of interocular asymmetry of optical coherence tomography (OCT) parameters is important 
for the glaucoma and optic neuropathies. This study was performed to evaluate the interocular 
asymmetry of OCT parameters in healthy children and adolescents. The circumpapillary retinal nerve 
fiber layer (RNFL) thickness, optic nerve head (ONH) parameters, and macular ganglion cell-inner 
plexiform layer (GCIPL) thickness were measured in 620 eyes of 310 healthy children and adolescents 
using Cirrus HD-OCT. The interocular asymmetry (right eye–left eye) in the OCT parameters was 
analyzed. The mean ± standard deviation age was 10.3 ± 3.7 years (range 5–17). The right eyes showed 
thinner superior quadrant RNFL, thicker nasal and temporal quadrant RNFL, lesser rim and disc 
areas, and thinner average, superior, and superonasal GCIPL than the left eyes (P < 0.05). The 2.5th 
and 97.5th percentile interocular difference tolerance limits were − 9.0 μm and 11.0 μm for average 
RNFL thickness, − 0.21 and 0.18 for average cup-to-disc ratio, and − 4.0 μm and 4.0 μm for average 
GCIPL thickness, respectively. Interocular differences were found in RNFL thickness, ONH parameters, 
and GCIPL thickness in healthy children and adolescents. These findings should be considered when 
comparing OCT parameters between the right and left eyes.

It has been reported that interocular asymmetry (difference between the right and left eyes) in circumpapillary 
retinal nerve fiber layer (RNFL) thickness, optic nerve head (ONH) parameters, and macular retinal ganglion 
cell (RGC) thickness measured by optical coherence tomography (OCT) may be an early sign of a glaucomatous 
change1–3. Therefore, it would be useful to investigate the normal range and affecting factors of the interocular 
difference in RNFL thickness, ONH parameters, and RGC thickness.

To date, only a few studies have assessed the interocular symmetry of OCT parameters in children and 
adolescents4–10. In addition to the classical RNFL and ONH evaluation using ophthalmoscope, fundus photo-
graphs, or OCT, advancement of OCT technology enabled automatic segmentation of RGC layers. Currently, 
macular RGC thickness measurement using OCT is essential for the evaluation of glaucoma and other optic 
neuropathies11–14. However, little is known about the interocular symmetry of macular RGC thickness in children 
and adolescents10. Furthermore, no study investigated interocular symmetry of RNFL thickness, ONH param-
eters, and macular RGC thickness simultaneously. When comparing the results of various studies, differences 
in participant characteristics were the main confounding factors for direct comparison among the studies. The 
best way to minimize this effect would be to obtain all possible parameters for the same participants. Therefore, 
simultaneous analysis of interocular symmetry of RNFL thickness, ONH parameters, and GCIPL thickness with 
a large number of children and adolescents may provide a useful information for the detection of glaucoma and 
various optic neuropathies in them. This study was performed to evaluate the interocular symmetry of RNFL 
thickness, ONH parameters, and RGC thickness in healthy children and adolescents.

Results
This study included 620 eyes from 310 healthy children and adolescents (150 females, 160 males). All participants 
were Korean. The mean ± standard deviation age was 10.3 ± 3.7 years (range 5–17) and mean refractive error was 
− 1.29 ± 2.16 D (range − 7.50 to + 5.50) in the right eye and − 1.37 ± 2.10 D (range − 6.75 to + 5.50) in the left eye. 
The interocular difference in the refractive error was not significant (P = 0.148).
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The interocular differences in OCT parameters.  The interocular differences in OCT parameters 
between the right and left eyes are presented in Table 1. The mean average RNFL thickness was 102.7 ± 9.3 μm in 
the right eye and 102.2 ± 9.1 μm in the left eye. The right eyes showed thinner superior quadrant RNFL, thicker 
nasal and temporal quadrant RNFL (P < 0.001). Among the ONH parameters, the right eyes showed lesser rim 
(P = 0.001) and disc areas (P = 0.002); cup-to-disc ratio and cup volume did not show significant differences 
(P > 0.05). Regarding the macular GCIPL thickness, the right eyes had a thinner GCIPL in average, superior, and 
superonasal sectors compared to the left eyes (P < 0.05).

The distribution of interocular difference in the average RNFL thickness, average GCIPL thickness, rim area, 
and average cup-to-disc ratio between the right and left eyes is presented in Fig. 1. The percentile distribution of 
the interocular differences in the OCT parameters between the right and left eyes is shown in Table 2. The 2.5th 
and 97.5th percentile interocular difference tolerance limits were − 9.0 μm and 11.0 μm for the average RNFL 
thickness, − 0.21 and 0.18 for average cup-to-disc ratio, and − 4.0 μm and 4.0 μm for average GCIPL thickness, 
respectively.

Affecting factors for the interocular differences.  The age was not significantly associated with 
interocular differences in the OCT parameters (P > 0.05). Interocular differences in the refractive error were 
significantly associated with interocular differences in the average RNFL thickness (P < 0.001), average GCIPL 
thickness (P < 0.001), disc area (P = 0.043), and rim area (P < 0.001, Table 3, Fig. 2). However, the average cup-
to-disc ratio (P = 0.847), vertical cup-to-disc ratio (P = 0.538), and cup volume (P = 0.776) were not significantly 
associated with interocular differences in the refractive error. Interocular differences in the disc size were signifi-
cantly associated with interocular differences in the rim area (P < 0.001), average cup-to-disc ratio (P < 0.001), 
vertical cup-to-disc ratio (P < 0.001), and cup volume (P < 0.001, Table 3). No significant difference was found in 
any of the OCT parameters when the interocular difference was compared between females and males (P > 0.05). 
In the multivariate analysis, both interocular differences in refractive error (standardized beta = 0.157) and 
disc size (standardized beta = 0.456) were significantly associated with interocular differences in the rim area 
(P < 0.001, R2 = 0.249).

Discussion
In the present study, interocular differences were found in RNFL thickness, ONH parameters, and GCIPL thick-
ness in healthy children and adolescents, except for in the cup-to-disc ratio and cup volume. The 2.5th and 97.5th 
percentile interocular difference tolerance limits were − 9.0 μm and 11.0 μm for the average RNFL thickness, 
− 0.21 and 0.18 for average cup-to-disc ratio, and − 4.0 μm and 4.0 μm for average GCIPL thickness, respectively. 
Interocular differences in RNFL and GCIPL thicknesses were affected by interocular differences in the refractive 

Table 1.   Interocular differences (right eye–left eye) in optical coherence tomography parameters between the 
right and left eyes (n = 310). Data are presented as mean ± standard deviation (range). RNFL retinal nerve fiber 
layer, ONH optic nerve head, GCIPL ganglion cell-inner plexiform layer. *Paired t test.

Right eye Left eye P value*

RNFL thickness (µm)

Average 102.7 ± 9.3 (79–144) 102.2 ± 9.1 (79–136) 0.070

Quadrant

Superior 128.9 ± 14.6 (90–172) 132.6 ± 16.3 (92–190) < 0.001

Nasal 70.1 ± 11.7 (43–114) 66.5 ± 10.6 (44–108) < 0.001

Inferior 131.5 ± 16.7 (86–204) 131.4 ± 16.3 (89–191) 0.948

Temporal 80.6 ± 13.5 (54–164) 77.9 ± 12.7 (49–155) < 0.001

ONH parameters

Rim area (mm2) 1.45 ± 0.27 (0.90–2.35) 1.48 ± 2.62 (0.89–2.48) 0.001

Disc area (mm2) 2.02 ± 0.39 (1.08–3.30) 2.06 ± 0.42 (1.22–3.32) 0.002

Average cup-to-disc ratio 0.48 ± 0.17 (0.06–0.75) 0.48 ± 0.17 (0.10–0.80) 0.709

Vertical cup-to-disc ratio 0.44 ± 0.16 (0.05–0.70) 0.43 ± 0.17 (0.05–0.72) 0.271

Cup volume (mm3) 0.177 ± 0.161 (0–0.845) 0.177 ± 0.168 (0–1.064) 0.954

GCIPL thickness (µm)

Average 84.8 ± 4.5 (70–98) 85.1 ± 4.6 (70–98) 0.019

Minimum 82.3 ± 4.3 (71–94) 82.5 ± 4.4 (70–96) 0.092

Superotemporal 83.7 ± 4.9 (70–98) 83.8 ± 4.7 (71–96) 0.262

Superior 85.2 ± 4.9 (68–99) 85.8 ± 4.9 (69–104) < 0.001

Superonasal 86.9 ± 4.6 (70–101) 87.8 ± 5.0 (69–103) < 0.001

Inferonasal 85.6 ± 5.0 (68–101) 85.3 ± 5.0 (68–102) 0.150

Inferior 82.6 ± 5.2 (67–101) 82.8 ± 5.2 (67–99) 0.620

Inferotemporal 84.8 ± 5.3 (72–100) 84.8 ± 5.1 (71–99) 0.823
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error. To the best of our knowledge, this is the first study to investigate the interocular asymmetry in the RNFL 
thickness, ONH parameters, and GCIPL thickness simultaneously in children and adolescents.

The interocular RNFL thickness symmetry in children and adolescents has been previously evaluated by 
several studies using spectral-domain OCT4–8. The 2.5th and 97.5th percentile interocular difference tolerance 
limits for average RNFL thickness were − 12.1 to − 9.0 μm for the 2.5th percentile and 8.9–13.0 μm for the 
97.5th percentile4–7 which were similar to the present study results. Although the statistical significance of the 
interocular RNFL thickness differences has varied among studies, common findings were reported; the right eye 
had a thinner RNFL in the superior quadrant and a thicker RNFL in the temporal quadrant than the left eye4–8. 
Previous studies found that higher levels of myopia were associated with a thinner RNFL in the superior quadrant 
and a thicker RNFL in the temporal quadrant15,16. In our previous study evaluating the interocular symmetry of 
the RNFL thickness, the right eyes had higher myopia than the left eyes17. Therefore, we had speculated that the 
interocular RNFL thickness differences in the superior and temporal quadrants may be owing, in part, to the 
interocular refractive error differences17. However, in the present study and previous studies with children and 
adolescents, the interocular refractive error difference was not significant4–8. Therefore, other factors, including 
the interocular variation in topographic retinal blood vessel distributions18 or RGC axon and glial cell densities19 
may contribute to the observed interocular asymmetry in the RNFL thickness.

When the ONH parameters were compared, the right eyes had lesser rim and disc areas compared to the 
left eyes. Previous studies reported no significant difference in ONH parameters4,5,9 or a greater vertical cup-
to-disc ratio in the right eye compared to the left eye in children7. These discrepancies among the studies may 
be explained by the differences in study population characteristics. The 2.5th and 97.5th percentile interocular 

Figure 1.   The distribution of interocular difference in the average retinal nerve fiber layer (RNFL) thickness, 
average ganglion cell-inner plexiform layer (GCIPL) thickness, rim area, and average cup-to-disc ratio between 
the right and left eyes.



4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:653  | https://doi.org/10.1038/s41598-021-04563-3

www.nature.com/scientificreports/

difference tolerance limits for the average cup-to-disc ratio were − 0.21 and 0.18, respectively. In previous stud-
ies, the 2.5th percentile ranged from − 0.11 to − 0.31, and the 97.5th percentile ranged from 0.14 to 0.25 for the 
average cup-to-disc ratio, respectively4,7.

Regarding the interocular symmetry of the macular RGC thickness in children, a study using Topcon 3D 
OCT-2000 (Topcon Corporation, Tokyo, Japan) reported that the right eyes had a thinner GCIPL in the superior 
hemisphere compared to the left eyes (mean difference, − 0.60 µm; P = 0.010), whereas in the inferior hemisphere 
(mean difference, 0.05 µm; P = 0.693) and total area (mean difference, − 0.09 µm; P = 0.111), the differences 
were not significant10. The 2.5th and 97.5th percentile interocular difference tolerance limits were − 2.5 μm and 
2.0 μm, respectively for the total area GCIPL thickness10. These results are in line with the present study results. 
In the present study, the 2.5th and 97.5th percentile interocular difference tolerance limits were − 4.0 μm and 
4.0 μm, respectively for the average GCIPL thickness and right eyes had significantly thinner average, superior, 
and superonasal GCIPL than the left eyes. Given that RNFL in the superior area corresponds to the superior 
RGC, this finding may be correlated with a thinner RNFL in the superior quadrant of the right eye than in the 
left eye. However, in another study investigating the interocular symmetry of the RNFL and GCIPL thickness in 
adults, although the right eyes had thinner superior RNFL and thicker temporal RNFL, no significant difference 
was found in the GCIPL thickness1. To date, this is the only study reporting the interocular symmetry of the 

Table 2.   Percentile distribution of interocular differences (right eye–left eye) in optical coherence tomography 
parameters between the right and left eyes (n = 310). RNFL retinal nerve fiber layer, ONH optic nerve head, 
GCIPL ganglion cell-inner plexiform layer.

Mean ± SD (range)

Percentile

2.5th 5th 95th 97.5th

RNFL thickness (µm)

Average 0.5 ± 5.1 (− 21.0 to 16.0) − 9.0 − 8.0 9.0 11.0

Quadrant

Superior − 3.8 ± 12.1 (− 45.0 to 41.0) − 29.5 − 25.5 14.5 19.2

Nasal 3.6 ± 8.0 (− 17.0 to 33.0) − 13.0 − 9.0 17.0 20.0

Inferior 0.0 ± 11.3 (− 40.0 to 31.0) − 26.5 − 19.0 17.0 20.5

Temporal 2.7 ± 7.9 (− 27.0 to 29.0) − 14.0 − 9.5 18.0 19.2

ONH parameters

Rim area (mm2) − 0.03 ± 0.13 (− 0.33 to 0.43) − 0.29 − 0.22 0.21 0.27

Disc area (mm2) − 0.04 ± 0.23 (− 1.01 to 0.76) − 0.59 − 0.44 0.31 0.36

Average cup-to-disc ratio 0.00 ± 0.09 (− 0.33 to 0.37) − 0.21 − 0.16 0.16 0.18

Vertical cup-to-disc ratio 0.01 ± 0.09 (− 0.30 to 0.40) − 0.23 − 0.14 0.16 0.18

Cup volume (mm3) 0.000 ± 0.077 (− 0.264 to 0.234) − 0.185 − 0.144 0.132 0.166

GCIPL thickness (µm)

Average − 0.2 ± 1.8 (− 9.0 to 6.0) − 4.0 − 3.0 3.0 4.0

Minimum − 0.2 ± 2.1 (− 6.0 to 8.0) − 4.0 − 4.0 4.0 4.2

Superotemporal − 0.2 ± 2.6 (− 9.0 to 15.0) − 5.0 − 4.0 3.0 4.0

Superior − 0.6 ± 2.8 (− 12.0 to 11.0) − 6.0 − 5.0 4.0 5.0

Superonasal − 0.9 ± 2.7 (− 12.0 to 10.0) − 7.0 − 6.0 3.0 4.0

Inferonasal 0.3 ± 3.0 (− 12.0 to 10.0) − 6.0 − 4.5 4.0 5.2

Inferior 0.1 ± 3.3 (− 13.0 to 10.0) − 6.0 − 5.0 6.5 8.0

Inferotemporal 0.0 ± 2.8 (− 11.0 to 14.0) − 6.0 − 4.0 4.0 5.0

Table 3.   Effect of age, interocular difference (right eye–left eye) in refractive error and disc size on interocular 
differences in optical coherence tomography parameters. RNFL retinal nerve fiber layer, GCIPL ganglion cell-
inner plexiform layer. *Linear regression analysis.

Age Refractive error Disc size

Standardized beta P value* Standardized beta P value* Standardized beta P value*

Average RNFL thickness 0.022 0.685 0.314 < 0.001 − 0.109 0.057

Average GCIPL thickness 0.012 0.828 0.366 < 0.001 0.065 0.254

Rim area − 0.020 0.716 0.206 < 0.001 0.474 < 0.001

Average cup-to-disc ratio − 0.027 0.637 − 0.011 0.847 0.627 < 0.001

Vertical cup-to-disc ratio − 0.033 0.566 − 0.035 0.538 0.584 < 0.001

Cup volume − 0.004 0.943 − 0.016 0.776 0.576 < 0.001
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GCIPL thickness in children and adolescents using Cirrus HD-OCT. Further studies with various populations 
are needed to validate our results.

The age and gender did not affect the interocular symmetry in the RNFL thickness and ONH parameters, 
which agrees with the results of previous studies4–10. Given that OCT parameters change with age20,21, further 
studies assessing longitudinal changes in the OCT parameter symmetry are needed.

In the present study, an eye with a greater interocular asymmetry in the refractive error had a greater interocu-
lar asymmetry in the RNFL thickness, disc area, rim area, and GCIPL thickness. It has been reported that an 
eye with higher myopia has a thinner RNFL15,16 and GCIPL22,23. This finding may contribute to the effect of the 
refractive error on OCT parameters. Previous studies also reported that the interocular GCIPL thickness differ-
ence was significantly associated with the interocular refractive error10 or axial length difference1. In contrast, the 
average cup-to-disc ratio, vertical cup-to-disc ratio, and cup volume symmetry were not significantly affected by 
the refractive error symmetry. Given that the interocular differences in these parameters were not significant, this 
finding may be expected. We suggest that the cup-to-disc ratio and cup volume may be useful for the detection of 
glaucoma or other optic neuropathies based on interocular comparison, especially in cases with an asymmetric 
refractive error. Further investigation is required to address this issue.

Many OCT studies have included one eye of an individual selected randomly or by disease severity. However, 
the laterality of the included eyes may have affected the OCT results, especially the RNFL and GCIPL thicknesses 
of the superior area. Therefore, when comparing OCT parameters between groups, different distributions of 
laterality may affect the study results.

Figure 2.   Scatter plot presenting the correlation between the interocular refractive error difference (right eye–
left eye) and interocular differences in the average retinal nerve fiber layer (RNFL) thickness, average ganglion 
cell-inner plexiform layer (GCIPL) thickness, rim area, and cup-to-disc ratio measured by optical coherence 
tomography.
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In the present study, a cup-to-disc ratio of > 0.5 or an asymmetry of > 0.2 were considered as exclusion criteria 
to exclude individuals with glaucoma. However, there may have been individuals with eyes that have a cup-to-disc 
ratio > 0.5 or an asymmetry of > 0.2 without glaucoma. Therefore, the inclusion of only individuals without this 
condition may have caused a selection bias. Given that glaucoma without high intraocular pressure in children 
or adolescents is rare, further studies including all individuals, regardless of the cup-to-disc ratio without high 
intraocular pressure, are needed.

Only Korean participants were included in the current study. The use of a single ethnicity minimizes the 
confounding effects of ethnicity. However, this may be a limitation of the present study in terms of the gen-
eralizability of the results. Axial length is an important factor affecting the OCT parameters15,24. However, in 
the present study population, axial length was not measured routinely. Therefore, the effect of axial length on 
OCT parameters could not be analyzed. Further studies including populations with various ethnicities and data 
regarding axial length may be needed.

In conclusion, interocular differences were found in the RNFL thickness, ONH parameters, and GCIPL 
thickness in healthy children and adolescents. However, cup-to-disc ratio and cup volume did not show signifi-
cant interocular differences and were less likely to be affected by the refractive error. These findings should be 
considered when interpreting the OCT measurements.

Materials and methods
Participants.  This retrospective cross-sectional study protocol was approved with the waiver of informed 
consent by the Institutional Review Board of Kim’s Eye Hospital, Seoul, Republic of Korea, and all study pro-
cedures adhered to the tenets of the Declaration of Helsinki. Individuals who visited Kim’s Eye Hospital, aged 
between 5 and 17 years, for a regular health examination were enrolled. Each participant underwent a full oph-
thalmic examination, including the assessment of the visual acuity, refractive error by cycloplegic refraction, and 
anterior segment using slit-lamp biomicroscopy and fundus examination with a 90 diopter (D) lens. In addition, 
all participants underwent OCT examination using Cirrus high-definition spectral-domain OCT (Cirrus HD-
OCT; Carl Zeiss Meditec, Dublin, CA, USA) to evaluate the circumpapillary RNFL thickness, ONH parameters, 
and macular RGC thickness.

The inclusion criteria included the presence of a best-corrected visual acuity of 20/30 or better, normal 
anterior segment, normal ONH with no glaucomatous changes (that is, large cup-to-disc ratio, neuroretinal rim 
narrowing, or disc hemorrhage), and a normal retina. Individuals with strabismus, amblyopia, a cup-to-disc ratio 
> 0.5, asymmetry of > 0.2 between fellow eyes, a history of previous ocular surgery, and a history of prematurity, 
developmental abnormality, or neurological or systemic diseases were excluded.

OCT measurements.  A 200 × 200 cube optic disc scan and macula scan were obtained using Cirrus HD-
OCT with eye tracking. To acquire the images, the scanning laser was focused after the participants were seated 
and properly positioned within the chin rest. Using the iris and fundus views, the ONH or macula was aligned 
so that it presented on the center of the scan. Once the ONH or macula was centered on the live scanning laser 
image, data from a 6 × 6 mm area were captured. The Cirrus HD-OCT algorithm automatically determines the 
vitreoretinal surface and posterior boundary of the RNFL and presents the circumpapillary RNFL thickness 
values in the global area (average) and four quadrants (superior, nasal, inferior, and temporal). Various ONH 
parameters, including the rim area, disc area, average cup-to-disc ratio, vertical cup-to-disc ratio, and cup vol-
ume, are automatically generated by the Cirrus HD-OCT algorithm. Cirrus HD-OCT automatically segments 
the anterior border of the inner plexiform layer and posterior border of the RGC and shows average, minimum, 
and sector-based (superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal) macular 
ganglion cell-inner plexiform layer (GCIPL) thickness values. Only images without prominent involuntary sac-
cade artifacts and a signal strength ≥ 7 were included in the analyses.

Statistical analyses.  A paired t-test was performed to evaluate the significance of interocular differences 
(right eye–left eye) in a refractive error presented as the spherical equivalent and OCT parameters. The rela-
tionship between the age, interocular refractive error differences, interocular optic disc size differences, and 
interocular OCT parameter differences were evaluated using linear regression analysis. The interocular differ-
ence of variables was compared between female and male participants using an independent t-test. Among the 
independent variables, those with significant association in univariate analysis (P < 0.05) were included in the 
multivariate analysis. A commercial software (SPSS version 12.0; SPSS, Chicago, IL) was used to perform all 
statistical analyses, and statistical significance was defined as P < 0.05.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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